AAAAAA

Single-Event Effects Induced by Two-Photon-Absorption:

Overview and Current Status

Dale McMorrow and Joseph S. Melinger
Naval Research Laboratory, Code 6812, Washington, DC 20375

William T. Lotshaw
Consultant, Bethesda, MD 20817
Stephen Buchner
QSS Group., Inc., Seabrook, MD 20706
Mike Maher
National Semiconductor Corp., South Portland, ME 04106
Mark W. Savage
NAVSEA Crane, Code 6054, Crane IN 47522



AAAAAA

Outline

;

» Laser-Induced Single-Event Effects (SEES)
* The Two-Photon Absorption (TPA)
SEE Experiment
 3-D Mapping of Single-Event Transients (SETSs)

in the LM124
- Backside “Through-Wafer” Carrier Injection

e Conclusions



AAAAAA

Pulsed Picosecond Laser

* Indispensable tool for SEE characterization
» Above-band gap pulsed laser can inject:
 a well-characterized quantity of charge
* In a well-defined location
- at a well-defined time
 with a well-defined charge-deposition profile
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Two-Photon Absorption SEE Experiment
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the high irradiance region near the
focus of the beam

Because of the lack of exponential
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This permits 3-D mapping and
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Two-Photon Absorption SEE Experiment

« Because the laser pulse
wavelength is sub-bandgap the
material is transparent to the

Carrier generation equation: optical pulse

« Carriers are generated by

dN (r, o (r, [°(r,z nonlinear absorption at high pulse
(r,2) = (r,2) + ,32 (r,2) irradiances by the simultaneous
dt hao 2ho absorption of two photons

« Carriers are highly concentrated in
the high irradiance region near the
focus of the beam

« Because of the lack of exponential
attenuation, carriers can be
injected at any depth in the
semiconductor material

« This permit 3-D mapping and
backside illumination
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Two-Photon Absorption SEE Experiment
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COMPLEMENTARY TECHINQUE

« Not intended to replace “conventional”
(above band gap) pulsed laser

« Not intended to replace heavy-ion irradiation
« WILL NOT replace these tools
* |s another “Tool” in our “SEE Toolbox”
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Two-Photon Absorption SEE Experiment
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Three-Dimensional Mapping of SEE Sensitivity
(LM124 Q20: General Characteristics)
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Three-Dimensional Mapping of SEE Sensitivity
(LM124 Q20: General Characteristics)
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“Z” Dependence: LM124 Q20 TPA: C1-epi Junction

(Inverting Configuration; gain of 20)

Overlayers

A

P

7
7
ﬁ
7
7
7
7
7
7

'.':-.'.-'_,.-":'-";'
7
7
7

Output Signal, V

Time, us



mTr T
Lz17 I=

Defense Threat Reduction

Y & Dependence: LM124 Q20 TPA: C1-epi Junction
(Inverting Configuration; gain of 20)

Overlayers 6
(C2) P (C1) A P

Output Signal, V
N

At

ol m——— -
N Z = 47 um!

0 10 20 30
Time, us




T
L’ii

Defense Threat Reduction
Agency

LN R Ly

“Z” Dependence: LM124 Q20 TPA: C1-epi Junction

(Inverting Configuration; gain of 20)

Overlayers

A

At

P

Output Signal, V
N




M re

“Z” Dependence: LM124 Q20 TPA
Low Power Measurements
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(Inverting Configuration; gain of 20)

;

R Overlayers
éF>02} P (C1 AKP;’E L A A
; (C2) (C1) ; -
o gf”
o gf”
ﬁ N (base) 12 umﬁ
ﬁ .............. ﬁi ©
ﬁ N+ (buried layer) ﬁ c%
7 =
x -

S




T
L’ii

Defense Threat Reduction

T ag» Dependence: LM124 Q20 TPA: Low Power
(Inverting Configuration; gain of 20)

;

Overlayers

FRFA
P (C1) A QZ L B B L
= i

N (base) 12 um

Q
D

“‘%‘R“&“&E\E‘*\%\T
-

NS

--------------

N+ (buried layer)

ChTI R

Output Signal, V




T
L’ii

Defense Threat Reduction

T ag» Dependence: LM124 Q20 TPA: Low Power
(Inverting Configuration; gain of 20)

;

Overlayers

Q
D

FRFA
P (C1) A QZ L B B L
= i

N (base) 12 um

“‘%‘R“&“&E\E‘*\%\T
-

--------------

NS

* (buried layer)

Output Signal, V

R
o
1 1 1 1 l 1 ? 1 1




T
L’ii

Defense Threat Reduction

T ag» Dependence: LM124 Q20 TPA: Low Power
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LM124 Q20 TPA SET: “Z” Dependence
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Backside “Through-Wafer” TPA lllumination
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Schematic Flip Chip Cross Section
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Backside “Through-Wafer” TPA lllumination

LM124 Operational Amplifier
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Backside “Through-Wafer” TPA lllumination
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Backside “Through-Wafer” TPA lllumination
LM124 Operational Amplifier
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Backside “Through-Wafer” TPA lllumination
SEU in Flip Chip SRAM

* |ssues

* through-wafer imaging
* InGaAs FPA

* highly-doped substrate
* linear loss from free-carrier absorption
- attenuates IR beam
« attenuates illumination light
« wafer thinned to minimize absorption

« Results: SEUs successfully injected in SRAM by
TPA at well characterized locations
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Backside “Through-Wafer” TPA lllumination

SEU in Flip Chip SRAM Test Structure
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Conclusions

* The two-photon absorption method represents a novel approach
to SEE evaluation with unique capabilities not exhibited by other
techniques

* The present work demonstrates the utility of the nonlinear-optical
TPA approach as a method for injecting carriers into the active
regions of devices using both top-side and through-wafer,
backside irradiation

* The use of backside irradiation eliminates interference from the
metallization layers, and circumvents many of the issues
associated with testing flip-chip-mounted parts

* The first experimental demonstrations of the through-wafer,
backside, two-photon-induced single-event effects technique are
presented
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Nonlinear Optical Measurements: Z-scans
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Open Aperture Z-Scan Measurement of TPA
Antimony-Doped Silicon (0.02 Q-cm)

—
L

Normalized Transmission (a.u

1.00 Psasancmns

0.95

0.90

0.85

0.80

0.75

—— 0.55 GW/cm®; AT _=0.034
——0.91 GW/cm®; AT _=0.05
—— 1.9 GW/cm®; AT__ =0.122
——3.93 GW/cm®; AT _=0.24

Z Position,

3) 10
mm



M g -
I Y4 UA4 LN R L
Defense Threat Reduction

AAAAAA Open Aperture Z-Scan Measurement of TPA
Antimony-Doped Silicon (0.02 Q-cm)

0251 [o Z-Scan Data ]

Linear Fit

0.20 -

0.15

Nonlinear Transmission

Pulse Energy, nJ



